HETEROCYCLES, XXIV. SYNTHESIS OF OPTICALLY PURE 2,3-TRANS-5,7, ${ }^{\prime}$, 4^{\prime}, 5^{\prime}-PENTAHYDROXYFLAVAN-3,4-DIOLS AND COMPARISON WITH NATURALLY OCCURRING LEUCODELPHINIDINS ${ }^{1}$

Masayuki Onda,* Shaoshun Li, Xian Li,
Shenyang College of Pbarmacy, Wenbua-Lu, Shenyang, Cbina
Yoshihiro Harigaya,* Hiroshi Takahashi, Hiromi Kawase, and Hitoshi Kagawa
Scbool of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108, Japan

Abstract

Two enantiomeric chalcone epoxides $\mathbf{4 a}$ and $\mathbf{4 b}$ have been synthesized in the optically pure state by the phase-transfer asymmetric epoxidation of the chalcone 3 accompanied by hplc separation. Stereoselective cyclization of $4 \mathbf{4}$ and $\mathbf{4 b}$ and subsequent methylation afford pure $(+)$-and (-)-ampelopsin pentamethyl ethers $\mathbf{6 a}$ and $\mathbf{6 b}$, respectively. Reduction of $\mathbf{6 a}$ and $\mathbf{6 b}$ with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$ diastereoselectively gives the pure 2,3-trans-3,4-trans-flavan3,4 -diols $7 \mathbf{a}$ and $\mathbf{7 b}$. On the other hand, reduction with $\mathrm{NaBH}_{4} /$ dioxane diastereoselectively furnishes the pure 2,3-trans-3,4-cis-flavan-3,4-diols $\mathbf{8 a}$ and $\mathbf{8 b}$.

From the comparisons of the specific rotations and melting points, it is deduced that the natural leucodelphinidins isolated from Cleistanthus collinus and Eucalyptus pilularis may belong to the 2,3-cis-flavan-3,4-diols.

The occurrence and stereochemistry of the currently known leucoanthocyanidins have been well reviewed by Haslam (1) and Porter (2). However, the question of the natural occurrence of leucocyanidin ($5,7,3^{\prime}, 4^{\prime}$ 'tetrahydroxyflavan-3,4-diol), leucodelphinidin ($5,7,3^{\prime}, 4^{\prime}, 5^{\prime}$-pentahydroxyflavan-3,4-diol), and leucopelargonidin ($5,7,4^{\prime}$ -trihydroxyflavan- 3,4 -diol) has remained essentially unresolved. Also, unambiguous stereochemical assignment has not been achieved for these leucoanthocyanidins. Ganguly and Seshadri (3,4) assigned the $2 R, 3 R$ configuration to (+)-leucocyanidin (Butea frondosa) and (-)-leucopelargonidin (Eucalyptus calophylla Kino), but the stereochemistry at the 4 position remained undecided. Recently, we $(5,6)$ attempted to approach the stereochemistry of these leucoanthocyanidins synthetically and concluded that $(+)$-leucocyanidin has the $2 R, 3 S, 4 S$-configuration, but that the structure of $(-)$ leucopelargonidin is doubtful.

Ganguly et al. (7) isolated (-)- and (+)-leucodelphinidins from Cleistantbus collinus and Eucalyptus pilularis, respectively, and stated that these leucodelphinidins were not enantiomeric with each other. Their physico-chemical properties are listed in Table 1. For the completion of this series of work, we now report the stereoselective synthesis of the optically pure 2,3 -trans-flavan- 3,4 -diols with the aim of examining the stereochemistry of the natural leucodelphinidins.

Table 1. Physico-chemical Properties of the Natural Leucodelphinidin Derivarives. ${ }^{\text {a }}$

Derivative	$(-)$-Leucodelphinidin	(+)-Leucodelphinidin
Pentamethyl ether	$\mathrm{mp} 160-164^{\circ}$	$\mathrm{mp} 180-184^{\circ}$
	$[\alpha]^{36} \mathrm{D}-53.8^{\circ}$	$[\alpha]^{32 \mathrm{D}+72.9^{\circ}}$
Pentamethyl ether diacerate . .	$\mathrm{mp} 218-220^{\circ}$	$\mathrm{mp} 225-230^{\circ}$

${ }^{2}$ The data in this table are from Ganguly et al. (7).

[^0]

6a $\underset{\text { 6a }}{\text { 6aOH }} \xrightarrow{\mathrm{NaBH}_{4}}$

$\begin{array}{ll}7 \mathrm{a} & (+)-2 R, 3 S, 4 R \\ 7 \mathrm{~b} & (-)-2 S, 3 R, 4 S\end{array}$
$\begin{array}{ll}\mathbf{8 a} & (+)-2 R, 3 S, 4 S \\ \mathbf{8 b} & (-)-2 S, 3 R, 4 R\end{array}$
SCHEME 1. a) $t-\mathrm{BuO}_{2} \mathrm{H} / \mathrm{NaOH} / \mathrm{BQdC} /$ toluene for $\mathbf{4 a}$. b) $t-\mathrm{BuO}_{2} \mathrm{H} / \mathrm{NaOH} / \mathrm{BQC} /$ toluene for $\mathbf{4 b}$. The drawings of the \mathbf{b}-series compounds refer to the mirror images of those depicted for the a-series compounds.

RESULTS AND DISCUSSION

Condensation of the acetophenone 1 (8) with the benzaldehyde 2 using KOH/ EtOH afforded the chalcone 3 (86%), to which the trans configuration was assigned by its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum ($J_{\alpha, \beta}=16.5 \mathrm{~Hz}$). Epoxidation of 3 with $t-\mathrm{BuO}_{2} \mathrm{H}$ in the presence of 1-benzylquinidinium chloride (BQdC) and NaOH in toluene enantioselectively gave the epoxide $\mathbf{4 a}(60 \%),[\alpha]^{28} \mathrm{D}-34.8^{\circ}$, whose enantiomeric excess (ee) was determined to be 62.3% by hplc analysis (9). The asymmetric epoxidation of 3 using 1benzylquininium chloride (BQC) instead of BQdC under the same conditions as above yielded the epoxide $\mathbf{4 b}(63 \%)\left(57.4 \%\right.$ ee), $[\alpha]^{29} \mathrm{D}+30.1^{\circ}$.

Preparative hplc of $\mathbf{4 a}$ and $\mathbf{4 b}$ obtained above furnished optically pure $\mathbf{4 a},[\alpha]^{28} \mathrm{D}$ -54.6°, and $\mathbf{4 b},[\alpha]^{29} \mathrm{D}+53.6^{\circ}$, in the approximate ratio corresponding to their initial ee (9). The $2 R, 3 S$ and $2 S, 3 R$ configurations (each 2,3-trans) were assigned to $4 a$ and $\mathbf{4 b}$, respectively, on the basis of their levo- and dextrorotations (10).

Treatment of $\mathbf{4 a}(100 \%)$ with $\mathrm{HCl} / \mathrm{MeOH}$ stereoselectively gave (+)-ampelopsin (dihydromyricetin) $[5 \mathrm{a}](70 \%),[\alpha]^{27} \mathrm{D}+24.2^{\circ}$, as the sole product, which was converted into the pentamethyl ether $6 \mathbf{a}(40 \%)(100 \%$ ee $),[\alpha]^{25} \mathrm{D}-28.2^{\circ}$, on methylation with $\mathrm{CH}_{2} \mathrm{~N}_{2} / \mathrm{Et}_{2} \mathrm{O}$. The ${ }^{1} \mathrm{H}$-nmr spectrum of $\mathbf{6 a}\left(J_{2,3}=12.0 \mathrm{~Hz}\right)$ suggests that the aryl and hydroxyl groupings adopt a 2,3 -diequatorial conformation. The $2 R, 3 R$ configuration (2,3 -trans) was determined for $\mathbf{6} \mathbf{a}$ by its cd spectrum showing a positive Cotton effect at 337 nm ($\mathrm{n} \mapsto \pi^{*}$) and a negative one at $290 \mathrm{~nm}\left(\pi \mapsto \pi^{*}\right)$ (11) (Figure 1).

Reduction of $6 \mathrm{a}(100 \%)$ with $\mathrm{NaBH}_{4} / \mathrm{MeOH}$ diastereoselectively afforded the flavan-3,4-diol 7a (77\%) (100% ee), mp $185-187^{\circ},[\alpha]^{25} \mathrm{D}+2.6^{\circ}(\mathrm{MeOH}),[\alpha]^{27} \mathrm{D}$ $+6.8^{\circ}\left(\mathrm{CHCl}_{3}\right)$, as the sole product. On the other hand, reduction of $6 \mathbf{a}(100 \%)$ with $\mathrm{NaBH}_{4} /$ dioxane diastereoselectively gave the flavan-3,4-diol 8a (46%) (100% ee), mp 188-192 $,[\alpha]^{25} \mathrm{D}+10.2^{\circ}(\mathrm{MeOH}),[\alpha]^{27} \mathrm{D}+17.6^{\circ}\left(\mathrm{CHCl}_{3}\right)$, as the sole product. The ${ }^{1} \mathrm{H}$-nmr spectra of $7 \mathbf{a}\left(J_{2,3}=10.2, J_{3,4}=7.5 \mathrm{~Hz}\right)$ and $\mathbf{8 a}\left(J_{2,3}=10.2, J_{3,4}=4.2 \mathrm{~Hz}\right)$ assigned the $2 R, 3 S, 4 R(2,3-t r a n s, 3,4-t r a n s)$ and $2 R, 3 S, 4 S(2,3-t r a n s, 3,4-c i s)$ configurations to $7 \mathbf{a}$ and $8 \mathbf{a}$, respectively. The above-obtained results suggest that the hydride ion attacks the carbonyl grouping axially in MeOH and equatorially in dioxane. The reduction mechanism will be presented elsewhere.

Figure 1. Cd spectra of $\mathbf{6 a}$ and $\mathbf{6 b}$ (each 100% ee).

The optically pure \mathbf{b}-series compounds were prepared from $\mathbf{4 b}$ (100% ee) by following the above procedures. Their absolute configurations were confirmed in the same way as employed for determining those of the a-series compounds.

Although the melting point of $(+)$-leucodelphinidin pentamethyl ether is similar to those of $7 \mathbf{a}$ and $\mathbf{8 a}$, the remarkable discrepancies are found in their specific rotations. Also, the melting point and specific rotation of (-)-leucodelphinidin pentamethyl ether are inconsistent with those of $\mathbf{7 b}$ and $\mathbf{8 b}$. These observations suggest that the natural leucodelphinidins are not 2,3-trans-flavan-3,4-diols. The currently known 2,3-cisleucoanthocyanidins in general show fairly large specific rotations compared to the 2,3trans ones. The representatives (12-14) are shown in Figure 2. Thus, it is speculated that the natural leucodelphinidins isolated by Ganguly et al. (7) may belong to the 2,3-cis-flavan-3,4-diols on the basis of their specific rotations.

ent-epifisetinidol-4 β-ol ${ }^{2}$
$[\alpha]^{20} \mathrm{D}+49.0^{\circ}\left(\mathrm{Me}_{2} \mathrm{CO} / \mathrm{H}_{2} \mathrm{O}\right)$

teracacidin ${ }^{\text {c }}$
$[\alpha]^{20} \mathrm{D}-73.3 \pm 0.8^{\circ}(\mathrm{EtOH})$
trimethyl ether
$[\alpha]^{20} \mathrm{D}-71.0 \pm 0.7^{\circ}(\mathrm{ErOH})$

melacacidin ${ }^{\text {b }}$
$[\alpha]^{16} \mathrm{D}-75^{\circ}(\mathrm{EtOH})$
tetramethyl ether
$[\alpha]^{25} \mathrm{D}-83.5^{\circ}(\mathrm{EtOH})$

isoteracacidin trimethyl ether ${ }^{\text {c }}$
$[\alpha]^{20} \mathrm{D}-40.3 \pm 0.9^{\circ}(\mathrm{EtOH})$

Figure 2. Specific rotations of the natural 2,3-cis-leucoanthocyanidins.

EXPERIMENTAL

General experimental procedures.-Melting points (uncorrected) were determined on a micro hot-stage apparatus. Hplc was performed on a JASCO TRY ROTAR-V using a Chiralpak OT (+) column under the same conditions as previously described (9). Specific rotations were taken on a JASCO DPI-181 polarimeter. Spectra were recorded on the following spectrometers: uv, Hitachi EPS-2U; cd, JASCO J-600; ir, Hitachi 260-30; ${ }^{1} \mathrm{H}-\mathrm{nmr}$, Varian EM-390 (90 MHz) (reference TMS); hrms, JEOL JMS DX-300; elemental analysis, Perkin-Elmer 240B. The uv, ir, and ${ }^{1} \mathrm{H}$-nmr spectra of the b-series compounds were superimposable on those of the corresponding a-series ones. The ee estimations were achieved by the ${ }^{1} \mathrm{H}$-nmr spectra taken in the presence of $\mathrm{Eu}(\mathrm{hfc})_{3}$ using the following signals: O-Me at $\delta 3.92$ for 6 a , $\mathbf{6 b}, 2^{\prime}$ - and $6^{\prime}-\mathrm{Hs}$ for $7 \mathbf{a}, 7 \mathbf{b}$ and $8 \mathbf{a}, 8 \mathbf{b}$, and 3 - and 4 -OAc for the $7 \mathbf{a}, 7 \mathbf{b}$ and $\mathbf{8 a}, \mathbf{8 b}$ diacetates. (These proton signals of racemic compounds appeared at two positions under the same conditions as employed for the optically pure compounds.)

[^1]3,4,5-Tris (METHOXYMETHOXY) BenZALDEHYDe [2].-A mixture of 3,4,5-trihydroxy-benzaldehyde $\cdot \mathrm{H}_{2} \mathrm{O}(103 \mathrm{mg}), \mathrm{MeOCH}_{2} \mathrm{Cl}(296 \mathrm{mg})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(825 \mathrm{mg})$ in absolute $\mathrm{Me}_{2} \mathrm{CO}(20 \mathrm{ml})$ was refluxed for 4 h . The reaction mixture was filtered, concentrated in vacuo and extracted with ErOAc. Workup of the organic layer gave an oily residue (164 mg) that was purified by preparative thc [Si gel, $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{6}(1: 10)$ to yield $\mathbf{2}$ ($147 \mathrm{mg}, 86 \%$), $R_{f} 0.55$, as a colorless oil: if $v \max \left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1690$ ($\mathrm{CH}=\mathrm{O}$); hrms $m / z[\mathrm{M}]^{+} 286.1047$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7}, 286.1051$). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7}, \mathrm{C}$ 54.54, H 6.34; found C 54.45, H 6.39.

3,4,5, 2', $4^{\prime}, 6^{\prime}$-HeXakis (methoxymethoxy) Chaicone [3]-A mixture of $\mathbf{1}(8)(157 \mathrm{mg}), \mathbf{2}$ (150 mg), and $\mathrm{KOH}(436 \mathrm{mg}$) in absolute $\mathrm{EtOH}(10 \mathrm{ml})$ was stirred at ambient temperature for 20 h . The reaction mixture was filtered, concentrated in vacuo, and extracted with ErOAc. Workup of the organic layer, followed by preparative tlc [Si gel, $\left.\mathrm{Me}_{2} \mathrm{CO}_{-} \mathrm{C}_{6} \mathrm{H}_{6}(1: 5)\right]$ of the product (297 mg), afforded $\mathbf{3}$ (270 $\mathrm{mg}, 91 \%), R_{f} 0.36$, as colorless needles of $\mathrm{mp} 102-102.5^{\circ}(\mathrm{ErOH})$: ir $v \max \left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.22(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-\beta), 6.84(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{H}-\alpha) ;$ hrms $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$ 568.2156 (calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{13}, 568.2154$). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{13}, \mathrm{C} 57.03, \mathrm{H} 6.38$; found C 56.68, H 6.34.
($2 R, 35$)-(-)-2,3-EPOXY-1, $2^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$-TRIS (METHOXYMETHOXY) PHENYL-3-3', $44^{\prime}, 5^{\prime}$-TRIS (METHOXYMETHOXY) PHENYLPROPANONE [4a] AND ITS ENANTIOMER 4b.-A mixture of $\mathbf{3}$ (400 mg), t - $\mathrm{BuO}_{2} \mathrm{H}$ ($73 \%, 0.8 \mathrm{ml}$), $\mathrm{BQdC}(15)(160 \mathrm{mg})$ and 2 N aqueous $\mathrm{NaOH}(2 \mathrm{ml})$ in toluene (10 ml) was stirred at 40° for 4 h (see Scheme 1). Workup of the organic layer, followed by preparative tlc $\left[\mathrm{Al}_{2} \mathrm{O}_{3} ; \mathrm{Me}_{2} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{6}\right.$ ($1: 40$)] of the product (405 mg), gave $\mathbf{4 a}(247 \mathrm{mg}, 60 \%)\left(62.3 \%\right.$ ee), $R_{f} 0.18$, as colorless needles of mp $67-69^{\circ}($ EtOH $)$: specific rotation $[\alpha]^{28}(\mathrm{~nm})-34.8^{\circ}(589),-37.5^{\circ}(577),-45.4^{\circ}(546),-123.9^{\circ}(435)$, $-469.6^{\circ}(365)\left(c=0.85, \mathrm{CHCl}_{3}\right)$; ir $\nu \max \left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1695(\mathrm{C}=\mathrm{O})$; hrms $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 584.2103$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{14}, 584.2103$). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{14}, \mathrm{C} 55.47, \mathrm{H} 6.21$; found $\mathrm{C} 55.74, \mathrm{H} 6.26$. There was recovered unreacted 3 ($135 \mathrm{mg}, 34 \%$).

A mixture of $\mathbf{3}(350 \mathrm{mg}), t-\mathrm{BuO}_{2} \mathrm{H}(73 \%, 0.8 \mathrm{ml}), \mathrm{BQC}(15)(150 \mathrm{mg})$ and 2 N aqueous $\mathrm{NaOH}(2$ ml) in toluene (10 ml) (see Scheme 1) was treated as above to yield unreacted $\mathbf{3}$ ($103 \mathrm{mg}, 29 \%$) and $\mathbf{4 b}$ (227 $\mathrm{mg}, 63 \%$) (57.4% ee), $R_{f} 0.18$, as colorless needles of $\mathrm{mp} 71-74^{\circ}(\mathrm{EtOH})$: specific rotation $[\alpha]^{29}(\mathrm{~nm})$ $+30.1^{\circ}(589),+31.6^{\circ}(577),+40.2^{\circ}(546),+108.5^{\circ}(435),+430.8^{\circ}(365)\left(c=0.90, \mathrm{CHCl}_{3}\right) ; \mathrm{hrms} \mathrm{m} / \mathrm{z}$ $[\mathrm{M}]^{+} 584.2103$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{14}, 584.2103$). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{14}, \mathrm{C} 55.47, \mathrm{H} 6.21$; found C 55.74, H 6.34.

Preparative hplc of fand $\mathbf{4 b}$.-A solution of $\mathbf{4 a}$ (62.3% ee) (20.4 mg) in $\mathbf{~ M e O H ~ (~} 3 \mathrm{ml}$) was chromatographed on a Chiralpak OT(+) column to yield $\mathbf{4} \mathbf{a}(100 \%$ ee) ($13.4 \mathrm{mg}, 66 \%$), Rt 15.5 , as colorless needles of $\mathrm{mp} 65-67^{\circ}(\mathrm{ErOH})$ and $\mathbf{~} \mathbf{b b}(100 \%$ ee) $(3.0 \mathrm{mg}, 15 \%)$, Rt 16.3 , as colorless needles of mp $68-70^{\circ}(\mathrm{ErOH})$.

A solution of $\mathbf{4 b}(57.4 \% \mathrm{ee})(18.2 \mathrm{mg})$ in $\mathrm{MeOH}(3.0 \mathrm{ml})$ was treated as above to give $\mathbf{4 a}(\mathbf{1 0 0 \%} \mathrm{ee})$ ($3.2 \mathrm{mg}, \mathbf{1 8 \%}$) and $\mathbf{4 b}$ (100% ee) ($12.4 \mathrm{mg}, 68 \%$).

Optical and spectral properties of 4a-Specific rotation $[\alpha]^{29}(\mathrm{~nm})-54.6^{\circ}(589),-58.2^{\circ}(577),-74.7^{\circ}$ (546), $-192.2^{\circ}(435),-824.5^{\circ}(365)\left(c=0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 3.89,3.80$ (each $1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-3$); hrms $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 584.2105$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{14}, 584.2103$). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{14}, \mathrm{C} 55.47, \mathrm{H} 6.21$; found $\mathrm{C} 55.47, \mathrm{H} 6.18$.

Optical and spectral properties of $\mathbf{4 b}$.—Specific rotation $[\alpha]^{29}(\mathrm{~nm})+53.6^{\circ}(589),+55.8^{\circ}(577)$, $+70.9^{\circ}(546),+190.2^{\circ}(435),+816.4^{\circ}(365)\left(c=0.81, \mathrm{CHCl}_{3}\right) ; \mathrm{hrms} m / z[\mathrm{M}]^{+} 584.2110$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{14}, 584.2103$). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{14}, \mathrm{C} 55.47$, H 6.21 ; found C 55.65, H 6.20 .
($2 R, 3 R$)-(+)-Ampelopsin [5a] and its enantiomer 5b.-A mixture of $\mathbf{4 a}$ (100% ee) (200.0 mg) and $\mathrm{HCl} /$ absolute $\mathrm{MeOH}(12 \%, 1 \mathrm{ml})$ in absolute $\mathrm{MeOH}(0.8 \mathrm{ml})$ was stirred at 50° for 20 min . Concentration of the reaction mixture in vacuo, followed by preparative tlc [Si gel, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (10:1)] of the product (108.4 mg), afforded $5 \mathbf{5 a}(77.1 \mathrm{mg}, 70 \%), R_{f} 0.15$, as colorless needles of $\mathrm{mp} 189-190^{\circ}$ (ErOH) [lit. (16) mp $\left.245-248^{\circ}\right]$; specific rotation $[\alpha]^{27}(\mathrm{~nm})+24.2^{\circ}(589),+25.5^{\circ}(577),+29.3(546)$, $+49.5^{\circ}(435),+282.5^{\circ}(365)(c=0.99, \mathrm{MeOH})\left[\mathrm{lit}\right.$. (16) $\left.[\alpha] \mathrm{D}+18.08^{\circ}(\mathrm{MeOH})\right]$; ir $v \max (\mathrm{KBr}) \mathrm{cm}^{-1}$ $3425,3300(\mathrm{OH}), 1640(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}\right) 86.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{2}^{\prime}, \mathrm{H}-6^{\prime}\right), 5.98,5.96$ (each 1 H , d, $J=1.8 \mathrm{~Hz}, \mathrm{H}-6, \mathrm{H}-8), 4.90(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{H}-2), 4.50(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{H}-3)$; hrms $m / z[\mathrm{M}]^{+} 320.0534$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{8}, 320.0531$).

A mixture of $\mathbf{4 b}(100 \%$ ee) $(150.7 \mathrm{mg})$, and $\mathrm{HCl} / \mathrm{absolute} \mathrm{MeOH}(12 \%, 1 \mathrm{ml})$ in absolute MeOH (1.0 ml) was treated as above to yield $\mathbf{5 b}$ ($46.2 \mathrm{mg}, 56 \%$) (100% ee), $R_{f} 0.15$, as colorless needles of mp $189-190^{\circ}($ ErOH $)$; specific rotation $[\alpha]^{29}(\mathrm{~nm})-21.7^{\circ}(589),-23.0^{\circ}(577),-26.4^{\circ}(546),-47.1^{\circ}$ (435), $-280.2^{\circ}(365)(c=0.95, \mathrm{MeOH})$; hrms $m / z[\mathrm{M}]^{+} 320.0524$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{8}, 320.0531$).
$(2 R, 3 R)-(+)$-AMPELOPSIN PENTAMETHYL ETHER [6a] AND ITS ENANTIOMER $\mathbf{6 b}$.-A solution
of $5 \mathbf{a}\left([\alpha]^{27} \mathrm{D}+24.2^{\circ}\right)(63.4 \mathrm{mg})$ in absolute $\mathrm{MeOH}(10 \mathrm{ml})$ was methylated with a saturated solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in absolute $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ in a sealed tube at 0° for 38 h . Workup of the reaction mixture, followed by preparative tlc [Si gel, $\left.\mathrm{Me}_{2} \mathrm{CO}_{-} \mathrm{C}_{6} \mathrm{H}_{6}(1: 6)\right]$ of the product (60.1 mg), gave 6 (30.6 mg , 40%) (100% ee), $R_{f} 0.36$, as colorless needles of $\mathrm{mp} 193-195^{\circ}$ (EtOH) [lit. (16) $\mathrm{mp} 190^{\circ}$; specific rotation $[\alpha]^{25}(\mathrm{~nm})-28.2^{\circ}(589),-31.4^{\circ}(577),-37.9^{\circ}(546),-90.4^{\circ}(435)\left(c=0.56, \mathrm{CHCl}_{3}\right)$, $-214.3^{\circ}(365)\left(c=0.056, \mathrm{CHCl}_{3}\right) ; \mathrm{uv} \lambda \max (\mathrm{MeOH}) \mathrm{nm}(\log \epsilon) 315$ (3.3), 284 (3.8), 226 (4.0), $210(4.3) ; \mathrm{cd}\left(c=1.28 \times 10^{-3}, \mathrm{MeOH}\right)[\theta]^{25}(\mathrm{~nm})+5600(337)$ (positive maximum), $0(323),-21400$ (290) (negative maximum), 0 (268), +12000 (253) (positive maximum), +7300 (242) (negative maximum) +22000 (227) (positive maximum); ir $v \max \left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3475(\mathrm{OH}), 1670(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$-nmr $\left(\mathrm{CDCl}_{3}\right) \delta 6.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}-6{ }^{\prime}\right), 6.17(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-6, \mathrm{H}-8), 5.97(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, $\mathrm{H}-2), 4.43(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{H}-3), 4.09\left(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{OH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.92(3 \mathrm{H}, \mathrm{s}$, OMe), $3.90\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}\right.$), $3.85,3.83$ (each $3 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}$); hrms $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 390.1326$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8}, 390.1313$). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8} .3 / 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 59.47, \mathrm{H} 5.86$; found $\mathrm{C} 59.37, \mathrm{H} 5.77$.

Treatment of a solution of $5 \mathbf{b}\left([\alpha]^{29} \mathrm{D}-21.7^{\circ}\right)(80.7 \mathrm{mg})$ in absolute $\mathrm{MeOH}(5 \mathrm{ml})$ and methylated with $\mathrm{CH}_{2} \mathrm{~N}_{2} /$ absolute $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ as above afforded $\mathbf{6 b}(36.2 \mathrm{mg}, 37 \%)(100 \%$ ee $), R_{f} 0.36$, as colorless needles of mp 192-193 ${ }^{\circ}(\mathrm{EtOH})$; specific rotation $[\alpha]^{29}(\mathrm{~nm})+26.4^{\circ}(589),+30.8^{\circ}(577),+38.4^{\circ}(546)$, $+87.2^{\circ}(435)\left(c=0.55, \mathrm{CHCl}_{3}\right),+204.8^{\circ}(365),\left(c=0.055, \mathrm{CHCl}_{3}\right) ; c d\left(c=1.28 \times 10^{-3}, \mathrm{MeOH}\right)[\theta]^{25}$ $(\mathrm{nm})-5500(337)$ (negative maximum), $0(323),+21200(290)$ (positive maximum), $0(268),-12000$ (253) (negative maximum), -5200 (242) (positive maximum), -21000 (227) (negative maximum); hrms $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 390.1307$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8}, 390.1313$). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 60.14, \mathrm{H}$ 5.81; found C 60.43, H 5.84.
($2 R, 3 S, 4 R$)-(+)-5, $7,3^{\prime}, 4^{\prime}, 5^{\prime}$-PENTAMETHOXYFLAVAN-3,4-diol [7a] AND ITS ENANTIOMER $7 \mathbf{b}$. $-\mathrm{NaBH}_{4}(13.6 \mathrm{mg})$ was added to a solution of 6 (100% ee) $(14.0 \mathrm{mg})$ in absolute $\mathrm{MeOH}(25 \mathrm{ml})$, and the whole was refluxed for 2 h . Workup of the reaction mixture, followed by preparative tle [Si gel, $\left.\mathrm{Me}_{2} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{6}(1: 5)\right]$ of the product (12.2 mg), gave $7 \mathrm{a}(10.8 \mathrm{mg}, 77 \%)\left(100 \%\right.$ ee), $\boldsymbol{R}_{f} 0.27$, as colorless needles of $\mathrm{mp} 185-187^{\circ}(\mathrm{EtOH})$: specific rotation $[\alpha]^{25}(\mathrm{~nm})+2.6^{\circ}(589),+5.1^{\circ}(577),+8.2^{\circ}(546)$, $+11.0^{\circ}(435),+24.5^{\circ}(365)(c=0.10, \mathrm{MeOH}),[\alpha]^{27}(\mathrm{~nm})+6.8^{\circ}(589),+8.1^{\circ}(577),+17.4^{\circ}(546)$, $+28.0^{\circ}(435),+64.2^{\circ}(365),\left(c=0.12, \mathrm{CHCl}_{3}\right)$; ir $\nu \max \left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3580(\mathrm{OH}) ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ $6.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 6.14,6.11$ (each $\left.1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-6, \mathrm{H}-8\right), 5.00(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-$ 4), $4.64(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{H}-2), 4.07(1 \mathrm{H}, \mathrm{dd}, J=10.2,7.5 \mathrm{~Hz}, \mathrm{H}-3), 3.85(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe})$, 3.82, 3.72 (each $3 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}$), 2.59, 1.79 (each $1 \mathrm{H}, \mathrm{s}, 3-\mathrm{OH}, 4-\mathrm{OH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$); hrms $m / z[\mathrm{M}]^{+} 392.1452$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}, 392.1470$). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 60.52, \mathrm{H}$ 6.22 ; found C 60.37 , H6. 10.

The 7a diacetate.-This compound was prepared from 7 a (100% ee) (8.2 mg) by acetylation with $\mathrm{Ac}_{2} \mathrm{O}(0.3 \mathrm{ml}) / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$ (2 drops) as a colorless oil ($6.2 \mathrm{mg}, 62 \%$) (100% ee); specific rotation $[\alpha]^{27}(\mathrm{~nm})+14.2^{\circ}(589),+20.4^{\circ}(577)+27.2^{\circ}(546),+52.6^{\circ}(435),+80.2^{\circ}(365)(c=0.10, \mathrm{MeOH}) ;$ ir $v \max \left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1740(\mathrm{OAc}) ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 6.14(1 \mathrm{H}, \mathrm{d}$, $J=4.8 \mathrm{~Hz}, \mathrm{H}-4), 6.12,6.10$ (each $1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-6, \mathrm{H}-8), 5.54(1 \mathrm{H}, \mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}$, $\mathrm{H}-3), 5.11(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-2), 3.82(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.80,3.77,3.73$ (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}$), 1.95, 1.79 (each $3 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc}$); hrms $m / z[\mathrm{M}]^{+} 476.1691$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{10}$, 476.1681). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{10}{ }^{-1 / 2} \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 59.37, \mathrm{H} 6.02$; found C 59.13, H 5.75.

Treatment of a solution of $\mathbf{6 b}\left(100 \%\right.$ ee) (10.1 mg) in absolute $\mathrm{MeOH}(25 \mathrm{ml})$ with NaBH_{4} (10.6 mg) as above gave $7 \mathbf{b}(6.7 \mathrm{mg}, 66 \%)\left(100 \%\right.$ ee), $R_{f} 0.27$, as colorless needles of $\mathrm{mp} 184-187^{\circ}$ (ErOH): specific rotation $[\alpha]^{25}(\mathrm{~nm})-3.1^{\circ}(589),-5.4^{\circ}(577),-7.6^{\circ}(546),-10.2^{\circ}(435),-26.1^{\circ}$ (365) $(c=0.10, \mathrm{MeOH}) ;[\alpha]^{27}(\mathrm{~nm})-7.4^{\circ}(589),-8.4^{\circ}(577),-18.0^{\circ}(546),-27.6^{\circ}(435),-68.1^{\circ}$ (365) ($c=0.10, \mathrm{CHCl}_{3}$); hrms $m / z[\mathrm{M}]^{+} 392.1473$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}, 392.1470$). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 59.84, \mathrm{H} 6.28$; found $\mathrm{C} 60.05, \mathrm{H} 6.25$.

The $7 \mathbf{b}$ diacetate.-A colorless oil: 100% ee; specific rotation $[\alpha]^{25}(\mathrm{~nm})-13.8^{\circ}(589),-22.0^{\circ}$ (577), -26.2° (546), $-48.1^{\circ}(435),-84.0^{\circ}(365)(c=0.10, \mathrm{MeOH})$; hrms $m / z[\mathrm{M}]^{+} 476.1680$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{10}, 476.1681$).
($2 R, 3 S, 4 R$)-(+)-5, $7,3^{\prime}, 4^{\prime}, 5^{\prime}$-PENTAMETHOXYFLAVAN-3,4-DIOL [8a] AND ITS ENANTIOMER 8b. $-\mathrm{NaBH}_{4}(3.0 \mathrm{mg})$ was added to a solution of $6 \mathbf{a}(100 \% \mathrm{ee})(9.5 \mathrm{mg})$ in absolute dioxane (3 ml), and the whole was stirred at ambient temperarure for 3 h . Workup of the reaction mixture, followed by preparative tlc [Si gel, $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{6}$ ($1: 5$)] of the product (8.7 mg), gave $\mathbf{8 a}\left(4.8 \mathrm{mg}, 46 \%\right.$) (100% ee), R_{f} 0.39 , as colorless needles of mp $188-192^{\circ}($ EtOH $)$: specific rotation $[\alpha]^{25}(\mathrm{~nm})+10.9(589),+13.6^{6}$ $(577),+14.5^{\circ}(546),+23.6^{\circ}(435),+40.9^{\circ}(365)(c=0.11, \mathrm{MeOH}) ;[\alpha]^{27}(\mathrm{~nm})+17.6^{\circ}(589),+18.8^{\circ}$ $(577),+21.0^{\circ}(546),+39.1^{\circ}(435),+79.6^{\circ}(365)\left(c=0.21, \mathrm{CHCl}_{3}\right)$; ir $\nu \max \left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3620$, $3570(\mathrm{OH}) ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{2}^{\prime}, \mathrm{H}-\mathrm{G}^{\prime}\right), 6.12(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-6, \mathrm{H}-8), 5.04(1 \mathrm{H}, \mathrm{d}, J=4.2$ $\mathrm{Hz}, \mathrm{H}-4), 4.89(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{H}-2), 3.99(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 3.86(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.84,3.82,3.74$
(each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}$), $2.66,2.58$ (each $1 \mathrm{H}, \mathrm{s}, 3-\mathrm{OH}, 4-\mathrm{OH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), hrms $m / z[\mathrm{M}]^{+}$ 392.1457 (calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}, 392.1470$). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}, \mathrm{C} 61.21, \mathrm{H} 6.16$; found C 60.90 , H6. 11 .

The 8a diacetate. -Colorless needles of mp 190-193 ${ }^{\circ}(\mathrm{ErOH}): 100 \%$ ee; specific rotation $[\alpha]^{29}(\mathrm{~nm})$ $+20.2^{\circ}(589),+26.4^{\circ}(577),+28.0^{\circ}(546),+38.6^{\circ}(435),+64.2^{\circ}(365)(c=0.10, \mathrm{MeOH})$; ir $v \max$ $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1740(\mathrm{OAc}) ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 6.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right), 6.43(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{H}-4)$, $6.10(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-6, \mathrm{H}-8), 5.42(1 \mathrm{H}, \mathrm{dd}, J=11.4,3.6 \mathrm{~Hz}, \mathrm{H}-3), 5.06(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-2), 3.86$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.82,3.76,3.73$ (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}$), 2.12, 1.83 (each $3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OAc}, 4-\mathrm{OAc}$); hrms m/z[M] ${ }^{+} 476.1657$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{10}, 476.1681$).

Treatment of a solution of $\mathbf{6 b}\left(100 \%\right.$ ee) (12.5 mg) in absolute dioxane (5 ml) with $\mathrm{NaBH}_{4}(3.4$ mg) as above gave $\mathbf{8 b}(4.6 \mathrm{mg}, 37 \%)\left(100 \%\right.$ ec), $\boldsymbol{R}_{f} 0.39$, as colorless needles of $\mathrm{mp} 187-192^{\circ}(\mathrm{EtOH})$; specific rotation $[\alpha]^{25}(\mathrm{~nm})-9.4^{\circ}(589),-11.6^{\circ}(577),-12.2^{\circ}(546),-21.9^{\circ}(435),-37.4^{\circ}(365)$ $(c=0.10, \mathrm{MeOH}),[\alpha]^{29}(\mathrm{~nm})-15.2^{\circ}(589),-16.5^{\circ}(577),-20.7^{\circ}(546),-37.1^{\circ}(435),-76.2^{\circ}$ (365), ($c=0.20, \mathrm{CHCl}_{3}$); hrms $m / z[\mathrm{M}]^{+} 392.1472$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}, 392.1470$). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 59.84, \mathrm{H} 6.28$; found C $59.78, \mathrm{H} 6.19$.

The $\mathbf{8 b}$ diactate. -Colorless needles of mp 191-194 $(\mathrm{EtOH}): 100 \%$ ee; specific rotation $[\alpha]^{27}(\mathrm{~nm})$ $-21.4^{\circ}(589),-24.1^{\circ}(577),-28.5^{\circ}(546),-37.8^{\circ}(435),-59.2^{\circ}(365)(c=0.10, \mathrm{MeOH}) ; \mathrm{hrms} \mathrm{m} / \mathrm{z}$ $[\mathrm{M}]^{+} 476.1676$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{10}, 476.1681$). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{10} .1 / 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 59.93, \mathrm{H}$ 5.97; found C 59.95, H 6.24.

LITERATURE CITED

1. E. Haslam, in: "The Flavonoids: Advances in Research." Ed. by J.B. Harborne and T.J. Mabry, Chapman and Hall, London, 1982, p. 417.
2. L.J. Porter, in: "The Flavonoids: Advances in Research." Ed. by J.B. Harborne and T.J. Mabry, Chapman and Hall, London, 1988, p. 21.
3. A.K. Ganguly and T.R. Seshadri, Tetrabedron, 6, 21 (1951).
4. A.K. Ganguly and T.R. Seshadri, J. Chem. Soc., 2787 (1961).
5. H. Takahashi, S. Li, Y. Harigaya, and M. Onda, Chem. Pharm. Bull., 36, 1877 (1988).
6. H. Takahashi, S. Li, Y. Harigaya, and M. Onda, J. Nat. Prod., 51, 730 (1988).
7. A.K. Ganguly, T.R. Seshadri, and P. Subramanian, Tetrabedron, 3, 225 (1958).
8. H. Takahashi, Y. Kubota, M. Iguchi, L. Fang, and M. Onda, Heterocycles, 24, 369 (1986).
9. H. Takahashi, S. Li, Y. Harigaya, and M. Onda, Heterocycles, 26, 3239 (1987).
10. B. Marsman and H. Wynberg, J. Org. Chem., 44, 2312 (1979).
11. W. Gaffield, Tetrabedron, 26, 4093 (1970).
12. S.E. Drewes and A.H. Ilsley, Pbytochemistry, 8, 1039 (1969).
13. J.W. Clark-Lewis and P.I. Mortimer, J. Chem. Soc., 4106 (1960).
14. S.E. Drewes and D.G. Roux, Biochem. J., 98, 493 (1966).
15. H. Takahashi, Y. Kubota, H. Miyazaki, and M. Onda, Cbem. Pbarm. Bull., 32, 4852 (1984).
16. P.K. Agrawal, S.K. Agarwal, and R.P. Rastogi, Phytochemistry, 19, 893 (1980).

Received 1 May 1989

[^0]: ${ }^{1}$ For part XXIII, see Takahashi et al. (6).

[^1]: ${ }^{2}$ From Drewes and Ilsley (12).
 ${ }^{\mathrm{b}}$ From Clark-Lewis and Mortimer (13).
 ${ }^{\text {c }}$ From Drewes and Roux (14).

